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Abstract

In longitudinal panels and other regression models with unobserved effects, fixed
effects estimation is often paired with cluster-robust variance estimation (CRVE) in
order to account for heteroskedasticity and un-modeled dependence among the errors.
CRVE is asymptotically consistent as the number of independent clusters increases,
but can be biased downward for sample sizes often found in applied work, leading
to hypothesis tests with overly liberal rejection rates. One solution is to use bias-
reduced linearization (BRL), which corrects the CRVE so that it is unbiased under
a working model, and t-tests with Satterthwaite degrees of freedom. We propose
a generalization of BRL that can be applied in models with arbitrary sets of fixed
effects, where the original BRL method is undefined, and describe how to apply the
method when the regression is estimated after absorbing the fixed effects. We also
propose a small-sample test for multiple-parameter hypotheses, which generalizes the
Satterthwaite approximation for t-tests. In simulations covering a variety of study
designs, we find that conventional cluster-robust Wald tests can severely under-reject
while the proposed small-sample test maintains Type I error very close to nominal
levels.

∗The authors thank Dan Knopf for helpful discussions about the linear algebra behind the cluster-robust
variance estimator.
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1 INTRODUCTION

In a wide array of economic analyses, interest centers on the parameters of linear regression

models, estimated by ordinary or weighted least squares (OLS/WLS) from a sample of

units that are correlated. Such correlation among units can arise from sampling aggregate

units (e.g., countries, districts, villages), each of which contains multiple observations; from

repeated measurement of an outcome on a common set of units, as in panel data; or from

model misspecification, as in analysis of regression discontinuity designs (e.g., Lee and Card,

2008). A common approach to inference in these settings is to use a cluster-robust variance

estimator (CRVE; Arellano, 1987; Liang and Zeger, 1986; White, 1984). The advantage of

CRVEs is that they produce consistent standard errors and test statistics without imposing

strong parametric assumptions about the dependence structure of the errors in the model.

Instead, the method relies on the weaker assumption that units can be grouped into clusters

that are mutually independent. CRVEs are an extension to another economic mainstay,

heteroskedasticity-robust variance estimators (Huber, 1967; White, 1980), which are used

to account for non-constant variance in regression models with independent errors. In

the past decade, use of CRVE has become standard practice for applied micro-economic

analysis, as evidenced by coverage in major textbooks and review articles (e.g., Angrist

and Pischke, 2009; Cameron and Miller, 2015; Wooldridge, 2010).

As a leading example of the application of CRVEs, consider a study of the effects on em-

ployment outcomes of several state-level policy shifts, where the policies were implemented

at different time-points in each state. In a difference-in-differences analysis of state-by-year

panel data, the policy effects would be parameterized in a regression model that includes

indicator variables for each policy shift and perhaps additional demographic controls. It

is also common to include fixed effects for states and time-periods in order to control for

unobserved confounding in each dimension. The model could be estimated by OLS, with

the fixed effects included as indicator variables; more commonly, the effects of the policy

indicators would be estimated after absorbing the fixed effects, a computational technique

that is also known as the fixed effects or within transformation (Wooldridge, 2010). Stan-

dard errors would then be clustered by state to account for residual dependence in the

errors from a given state, and these clustered standard errors would be used to test hy-
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potheses regarding each policy or the set of policies. The need to cluster the standard

errors by state, even when including state fixed effects, was highlighted by Bertrand, Duflo

and Mullainathan (2004), who showed that to do otherwise can lead to inappropriately

small standard errors and hypothesis tests with incorrect rejection rates.

The consistency property of CRVEs is asymptotic in the number of independent clusters

(Wooldridge, 2003). Recent methodological work has demonstrated that CRVEs can be

biased downward and associated hypothesis tests can have Type-I error rates considerably

in excess of nominal levels when based on samples with only a small or moderate number of

clusters (e.g., Webb and MacKinnon, 2013). Cameron and Miller (2015) provide a thorough

review of this literature, including a discussion of current practice, possible solutions, and

open problems. In particular, they demonstrate that small-sample corrections for t-tests

implemented in common software packages such as Stata and SAS do not provide adequate

control of Type-I error.

Bell and McCaffrey (2002, see also McCaffrey, Bell and Botts, 2001) proposed a method

that improves the small-sample properties of CRVEs. Their method, called bias-reduced

linearization (BRL), entails adjusting the CRVE so that it is exactly unbiased under a

working model specified by the analyst, while also remaining asymptotically consistent un-

der arbitrary true variance structures. Simulations reported by Bell and McCaffrey (2002)

demonstrate that the BRL correction serves to reduce the bias of the CRVE even when the

working model is misspecified. The same authors also proposed and studied small-sample

corrections to single-parameter hypothesis tests using the BRL variance estimator, based

on Satterthwaite (Bell and McCaffrey, 2002) or saddlepoint approximations (McCaffrey

and Bell, 2006). Angrist and Lavy (2009) applied the BRL correction in an analysis of a

longitudinal cluster-randomized trial with 35 clusters, observing that the bias correction

makes a difference for inferences.

Despite a growing body of simulation evidence that BRL performs well (e.g., Imbens

and Kolesar, 2015), several problems with the method hinder its wider application. First,

Angrist and Pischke (2009) noted that the BRL correction breaks down (i.e., cannot be

calculated) in some highly parameterized models, such as state-by-year panels that include

fixed effects for states and for years. Second, in models with fixed effects, the magnitude
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of the BRL adjustment depends on whether it is computed based on the full design ma-

trix used in OLS estimation (i.e., including fixed effect dummies) or after absorbing the

fixed effects. Cameron and Miller (2015) noted that other methods of small-sample correc-

tion suffer from the same subtle problem of depending on arbitrary computational details.

Third, extant methods for hypothesis testing based on BRL are limited to single-parameter

constraints (Bell and McCaffrey, 2002; McCaffrey and Bell, 2006) and small-sample meth-

ods for multiple-parameter hypothesis tests remain lacking. Multiple-parameter tests are

used in a range of applications, including in panel data settings (e.g., Hausman tests for con-

sistency of random effects estimators), seemingly unrelated regression models, and analysis

of field experiments with multiple treatment groups.

This paper addresses each of these concerns in turn, with the aim of extending the

BRL method so that is suitable for everyday econometric practice, including models with

fixed effects. First, we describe an extension to the BRL adjustment that is well-defined in

models with arbitrary sets of fixed effects, where existing BRL adjustments break down.

Second, we demonstrate how to calculate the BRL adjustments so that they are invariant to

whether the regression model is estimated including dummy fixed effects or after absorbing

the fixed effects (i.e., using the within estimator) and identify conditions under which first-

stage absorption of the fixed effects can be safely ignored. Finally, we propose a procedure

for testing multiple-parameter hypotheses by approximating the sampling distribution of

the Wald statistic by Hotelling’s T 2 distribution with estimated degrees of freedom. The

method is a generalization of the Satterthwaite correction proposed by Bell and McCaffrey

(2002) for single parameter constraints.

Our work is related to a stream of recent literature that has examined methods for

cluster-robust inference with a small number of clusters. Conley and Taber (2011) proposed

methods for hypothesis testing in a difference-in-differences setting where the number of

treated units is small and fixed, while the number of untreated units increases asymptot-

ically. Ibragimov and Müller (2010) proposed a method for constructing robust tests of

scalar parameters that maintains the nominal Type-I error rate; however, their method

requires that the target parameter be identified within each independent cluster and so

it is not always applicable. Cameron, Gelbach and Miller (2008) investigated a range of
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bootstrapping procedures that provide improved Type-I error control in small samples,

finding that a cluster wild-bootstrap technique was particularly accurate in small samples.

Nearly all of this work has focused on single-parameter hypothesis tests only. For multiple-

parameter constraints, Cameron and Miller (2015) suggest an ad-hoc degrees of freedom

adjustment and note, as an alternative, that bootstrapping techniques can in principle be

applied to multiple-parameter tests. However, little methodological work has examined the

accuracy of multiple-parameter tests.

The paper is organized as follows. The remainder of this section introduces our econo-

metric framework and reviews the standard CRVE methods, as implemented in most soft-

ware applications. Section 2 reviews the original BRL correction and describes modifica-

tions that make it possible to implement BRL in a broad class of models with fixed effects.

Section 3 discusses methods for hypothesis testing based on the BRL-adjusted CRVE. Sec-

tion 4 reports a simulation study examining the null rejection rates of our proposed test

for multiple-parameter constraints, where we find that the small-sample test offers drastic

improvements over commonly implemented alternatives. Section 5 illustrates the use of

the proposed hypothesis tests in three examples that cover a variety of contexts in which

CRVE is commonly used. Section 6 concludes and discusses avenues for future work.

1.1 Econometric framework

We consider a linear regression model of the form,

yij = r′ijβ + s′ijγ + t′ijµ + εij (1)

where for observation j in cluster i, rij is a vector of r predictors of primary interest (e.g.,

policy variables) and any additional controls, sij is a vector of s fixed effects that vary across

clusters, and tij is a vector of t fixed effects that are identified within clusters. In the state-

policy example described in the introduction, the rij would include indicator variables for

each policy change, as well as additional demographic controls; sij would include year

fixed effects; and tij would indicate state fixed effects. Interest would center on testing

hypotheses regarding the coefficients in β that correspond to the policy indicators, while

γ and µ would be treated as incidental.
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For developing theory, it is often easier to work with the matrix version of this model,

in which

yi = Riβ + Siγ + Tiµ + εi, (2)

where for cluster i, Ri is an ni × r matrix of focal predictors and controls; Si is an ni × s

matrix describing fixed effects that vary across clusters, and Ti is an ni×t matrix describing

fixed effects that are identified only within clusters. The distinction between the covariates

Ri versus the fixed effects Si is arbitrary and depends on the analyst’s inferential goals.

However, the distinction between the two fixed effect matrices Si and Ti is unambiguous,

in that the within-cluster fixed effects satisfy ThT
′
i = 0 for h 6= i.

We shall assume that E (εi |Ri,Si,Ti ) = 0 and Var (εi |Ri,Si,Ti ) = Σi, for i = 1, ...,m,

where the form of Σ1, ...,Σm may be unknown but the errors are independent across clus-

ters. For notational convenience, let Ui = [Ri Si] denote the set of predictors that vary

across clusters, Xi = [Ri Si Ti] denote the full set of predictors, α = (β′,γ ′,µ′)
′
, and

p = r + s + t. Denote the total number of individual observations by N =
∑m

i=1 ni. Let

y, R, S, T, U, X, and ε denote the matrices obtained by stacking their corresponding

components, as in R = (R′1 R′2 · · · R′m)′.

We assume that β is estimated by weighted least squares (WLS) using symmetric, full

rank weighting matrices W1, ...,Wm. Clearly, the WLS estimator includes OLS as a special

case (where Wi = Ii, an identity matrix), as well as feasible GLS.1 In the latter case, it

is assumed that Var (ei |Xi ) = Φi, where Φi is a known function of a low-dimensional

parameter. For example, an auto-regressive error structure might be posited to describe

repeated measures on an individual over time. The weighting matrices are then taken to

be Wi = Φ̂
−1
i , where the Φ̂i are constructed from estimates of the variance parameter.

Finally, for analysis of data from complex survey designs, WLS may be used with sampling

weights in order to account for unequal selection probabilities.

1The WLS estimator also encompasses the estimator proposed by Ibragimov and Müller (2010) for

clustered data. Assuming that Xi has rank p for i = 1, ...,m, their proposed approach involves estimating

β separately within each cluster and taking the simple average of these estimates. The resulting average

is equivalent to the WLS estimator with weights Wi = Xi (X′iXi)
−2

Xi.
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1.2 Absorption

The goal of most analyses is to estimate and test hypotheses regarding the parameters in β,

while the fixed effects γ and µ are not of inferential interest. Moreover, estimating all of the

parameters by WLS becomes computationally intensive and numerically inaccurate if the

model includes a large number of fixed effects (i.e., s+ t large). A commonly implemented

solution is to first absorb the fixed effects, which leaves only the r parameters in β to be

estimated. Section 2 examines the implications of absorption for application of the BRL

adjustment. In order to do, we now formalize the absorption method.

To begin, denote the full block-diagonal weighting matrix as W = diag (W1, ...,Wm).

Let K be the x × r matrix that selects the covariates of interest, so that XK = R and

K′α = β. For a generic matrix Z of full column rank, let MZ = (Z′WZ)−1 and HZ =

ZMZZ′W.

The absorption technique involves obtaining the residuals from the regression of y on

T and from the multivariate regressions of U = [R S] on T. The y residuals and R

residuals are then regressed on the S residuals. Finally, these twice-regressed y residuals

are regressed on the twice-regressed R residuals to obtain the WLS estimates of β. Let

S̈ = (I−HT) S, R̈ = (I−HS̈) (I−HT) R, and ÿ = (I−HS̈) (I−HT) y. In what follows,

subscripts on R̈, S̈, Ü, and ÿ refer to the rows of these matrices corresponding to a specific

cluster. The WLS estimator of β can then be written as

β̂ = MR̈

m∑
i=1

R̈′iWiÿi. (3)

This estimator is algebraically identical to the direct WLS estimator based on the full set

of predictors,

β̂ = K′MX

m∑
i=1

X′iWiyi,

but avoids the need to solve a system of p linear equations.

In the remainder, we focus on the more general case in which fixed effects are absorbed

before estimation of β. For models that do not include within-cluster fixed effects, so that

the full covariate matrix is U = [R S], all of the results hold after substituting U for R̈.
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1.3 Standard CRVE

The WLS estimator β̂, has true variance

Var
(
β̂
)

= MR̈

(
m∑
i=1

R̈′iWiΣiWiR̈i

)
MR̈, (4)

which depends upon the unknown variance matrices Σi. A model-based approach to esti-

mating this variance would involve assuming that Σi follows a structure defined by some

low-dimensional parameter; for example, it may be assumed that the structure was hierar-

chical or auto-regressive. The model-based variance estimator would substitute estimates

of Σi into (4). However, if the model is misspecified, this estimator will be inconsistent

and inferences based upon it will be invalid.

The CRVE involves estimating Var
(
β̂
)

empirically, without imposing structural as-

sumptions on Σi. While there are several versions of this approach, all can be written in

the form

VCR = MR̈

(
m∑
i=1

R̈′iWiAieie
′
iA
′
iWiR̈i

)
MR̈, (5)

where ei = Yi − Xiβ̂ is the vector of residuals from cluster i and Ai is some ni by ni

adjustment matrix.

The form of these adjustment matrices parallels those of the heteroskedasticity-consistent

(HC) variance estimators proposed by MacKinnon and White (1985). The most basic

CRVE, described by Liang and Zeger (1986), uses Ai = Ii, an ni × ni identity matrix.

Following Cameron and Miller (2015), we refer to this estimator as CR0. This estimator is

biased towards zero because the cross-product of the residuals eie
′
i tends to under-estimate

the true variance Σi in cluster i. A rough bias adjustment is to take Ai = cIi, where

c =
√

(m/(m− 1)); we denote this adjusted estimator as CR1. Some functions in Stata

use a slightly different correction factor cS =
√

(mN)/[(m− 1)(N − p)]; we will refer to

the adjusted estimator using cS as CR1S. When N >> p, cS ≈
√
m/(m− 1) and so CR1

and CR1S will be very similar. The CR1 or CR1S estimator is now commonly used in

empirical applications.

Use of these adjustments still tends to under-estimate the true variance of β̂ (Cameron

and Miller, 2015). Analytic work and simulation studies indicate that the degree of bias

depends not only on the number of clusters m, but also on features of the covariates in
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X. Specifically, the bias tends to be larger when the covariates are skewed or unbalanced

across clusters, or when clusters vary in size (Carter, Schnepel and Steigerwald, 2013;

MacKinnon, 2013). A more principled approach to bias correction would therefore take into

account these features of the covariates. One such estimator uses adjustment matrices given

by Ai =
(
I− R̈iMR̈R̈′iWi

)−1
. This estimator, denoted CR3, closely approximates the

jackknife re-sampling variance estimator (Bell and McCaffrey, 2002; Mancl and DeRouen,

2001). However, CR3 tends to over-correct the bias of CR0, while the CR1 estimator tends

to under-correct. The next section describes in detail the BRL approach, which makes

adjustments that are intermediate in magnitude between CR1 and CR3.

2 BIAS REDUCED LINEARIZATION

In contrast to the CR1 or CR3 estimators, the BRL correction for CRVE is premised on

a “working” model for the structure of the errors, which must be specified by the analyst.

Under a given working model, adjustment matrices Ai are defined so that the variance

estimator is exactly unbiased. We refer to this correction as CR2 because it is an extension

of the HC2 variance estimator for regressions with uncorrelated errors, which is exactly

unbiased when the errors are homoskedastic (MacKinnon and White, 1985). The idea of

specifying a model may seem antithetical to the purpose of using CRVE, yet extensive

simulation studies have demonstrated that the method performs better in small samples

than any of the other adjustments, even when the working model is incorrect. (See Section

4 for a review of this literature.) Although the CR2 estimator may no longer be exactly

unbiased when the working model is misspecified, its bias still tends to be greatly reduced

compared to CR1 or CR0 (thus the name “bias reduced linearization”). Furthermore, as

the number of clusters increases, reliance on the working model diminishes. In a sense,

CR2 provides necessary scaffolding in the small-sample case, which falls away when there

is sufficient data.

Let Φi denote a working model for the covariance of the errors in cluster i (up to a

scalar constant), with Φ = diag (Φ1, ...,Φm). For example, following Bell and McCaffrey

(2002) we might assume Φi = Ii, i.e., that the errors are uncorrelated and homoskedastic.

Alternatively, Imbens and Kolesar (2015) suggested using a basic random effects (i.e.,
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compound symmetric) structure, in which Φi has unit diagonal entries and off-diagonal

entries of ρ, with ρ estimated using the OLS residuals (see Imbens and Kolesar, 2015, p.

16).

Based on a given working model, in the original formulation of Bell and McCaffrey

(2002), the BRL adjustment matrices are chosen to satisfy the criterion

Ai (I−HX)i Φ (I−HX)′i A
′
i = Φi (6)

where (I−HX)i denotes the rows of I − HX corresponding to cluster i. If the working

model and weight matrices are both taken to be identity matrices, then the adjustment

matrices simplify to Ai = (Ii −XiMXX′i)
−1/2, where Z−1/2 denotes the symmetric square-

root of the matrix Z. This formulation of Ai is problematic because, for some fixed effects

models that are common in economic applications, Equation 6 does not have a solution. In

the next two subsections, we address two problems that arise in models with fixed effects,

thereby articulating a BRL methodology that is suitable for a wide range of applications.

2.1 Generalized Inverse

The equality defining the Ai matrices cannot always be solved because it is possible that

some of the matrices involved are not of full rank, and thus cannot be inverted. Angrist and

Pischke (2009) note that this problem arises in balanced state-by-year panel models that

include fixed effects for states and for years. In order to address this concern, we provide

an alternative criterion for the adjustment matrices that can always be satisfied. Instead

of criterion (6), we seek adjustment matrices Ai that satisfy:

R̈′iWiAi (I−HX)i Φ (I−HX)′i A
′
iWiR̈i = R̈′iWiΦiWiR̈i. (7)

A variance estimator that uses such adjustment matrices will be exactly unbiased when the

working model is correctly specified.

The above criterion (7) does not uniquely define Ai. One solution, which produces

symmetric adjustment matrices, uses

Ai = D′iB
+1/2
i Di, (8)
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where Di is the upper-right triangular Cholesky factorization of Φi,

Bi = Di (I−HX)i Φ (I−HX)′D′i, (9)

and B
+1/2
i is the symmetric square root of the Moore-Penrose inverse of Bi. The Moore-

Penrose inverse is well-defined and unique even when Bi is not of full rank (Banerjee and

Roy, 2014, Thm. 9.18). These adjustment matrices satisfy criterion (7), as stated in the

following theorem.

Theorem 1. Let Li =
(
Ü′Ü− Ü′iÜi

)
, where Ü = (I−HT) U, and assume that L1, ...,Lm

have full rank r+s. Further assume that Var (εi |Ri,Si,Ti ) = σ2Φi, for i = 1, ...,m. Then

the adjustment matrix Ai defined in (8) and (9) satisfies criterion (7) and the CR2 variance

estimator is exactly unbiased.

Proof is given in Appendix A. If Bi is of full rank, then the adjustment matrices also

satisfy the original criterion (6). The main implication of Theorem 1 is that the CR2

variance estimator remains well-defined, even in models with large sets of fixed effects.

2.2 Absorption and Dummy Equivalence

A problem with existing small-sample adjustments to CRVEs is that they can result in a

different estimator depending upon if the fixed effects are estimated by OLS or are first

absorbed. For example, this problem arises with the CR1S estimator because it uses a

multiplicative correction to the residuals that depends on the total number of covariates

estimated in the model. When fixed effects are included as indicators, the constant is

calculated as cS =
√

(mN)/[(m− 1)(N − p)], where p is the total number of covariates,

including fixed effects. In contrast, if the fixed effects are absorbed, the constant is cal-

culated as cS =
√

(mN)/[(m− 1)(N − r)], where r is the number of covariates that are

not absorbed. Cameron and Miller (2015) highlight that this discrepancy can be substan-

tial if the clusters are small. For instance, if each cluster includes ni = 2 units, then the

CR1S estimator based on estimating the fixed effects by OLS is over twice as large as the

estimator based on the absorbed model. Such differences between the correction based on

OLS estimation of the fixed effects and the correction based on the absorbed model are
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problematic because the magnitude of the variance estimator should not depend on how

the model estimates are calculated.

Similar inconsistencies can arise when applying the BRL method in models with fixed

effects. Consider the scenario in which absorption is used to estimate β; here, the analyst

might choose to calculate the CR2 correction based on the absorbed covariate matrix R̈—

that is, by substituting HR̈ for HX in (9)—in order to avoid calculating the full projection

matrix HX. However, this approach can lead to differences in the adjustment matrices

compared to when the full model is estimated by OLS because it is based on a subtly dif-

ferent working model. Essentially, calculating CR2 based on the absorbed model amounts

to assuming that the working model Φ applies not to the model errors ε, but rather to the

errors from the regression of ÿ on R̈. We find this method of specifying the working model

to be incoherent, and therefore recommend against taking it. Rather, the CR2 adjustment

matrices should be calculated based on a working model for the errors in the full regression

model, following Equations (8) and (9) as stated.

A drawback of using the CR2 adjustment matrices based on the full regression model

is that it entails calculating the projection matrix HX for the full set of p covariates (i.e.,

including fixed effect indicators). Given that the entire advantage of using absorption to

calculate β̂ is to avoid computations involving large, sparse matrices, it is of interest to

find methods for more efficiently calculating the CR2 adjustment matrices. Some efficiency

can be gained by using the fact that the residual projection matrix I−HX can be factored

into components as (I−HX)i = (I−HR̈)i (I−HS̈) (I−HT).

In certain cases, further computational efficiency can be achieved by computing the

adjustment matrices after absorbing the within-cluster fixed effects T (but not the between-

cluster fixed effects S). Specifically, if the weights used for WLS estimation are the inverses

of the working covariance model, so that Wi = Φ−1i for i = 1, ...,m, then the adjustment

matrices can be calculated without accounting for the within-cluster fixed effects. This

result is formalized in the following theorem.

Theorem 2. Let Ãi = D′iB̃
+1/2
i Di, where

B̃i = Di (I−HR̈)i (I−HS̈) Φ (I−HS̈)′ (I−HR̈)′i D
′
i. (10)

If TiT
′
k = 0 for j 6= k and W = Φ−1, then Ai = Ãi.
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Proof is given in Appendix A. The main implication of Theorem 2 is that the more com-

putationally convenient formula B̃i can be applied in the common case that the weighting

matrices are the inverse of the working covariance model.

Following the working model suggested by Bell and McCaffrey (2002), in which Φ = I,

the above theorem shows that the adjustment method is invariant to the choice of method

for dealing with fixed effects so long as the model is estimated by OLS (i.e., W = I). In

this case, the CR2 adjustment matrices then simplify further to

Ai =

(
Ii − Üi

(
Ü′Ü

)−1
Ü′i

)+1/2

.

In contrast, if the working model proposed by Imbens and Kolesar (2015) is instead used,

then the above theorem implies that the CR2 adjustments will differ if the model is esti-

mated by OLS with dummies for fixed effects versus by using absorption.

The two theorems of this section extend the BRL methodology described by Bell and

McCaffrey (2002), demonstrating how the CR2 adjustment can be computed efficiently—

and from a coherent working model—for a broad range of commonly used regression models,

including those with within- and between-cluster fixed effects. The next section addresses a

final set of concerns: how to conduct single- and multiple-parameter hypothesis tests using

the CR2 estimator.

3 HYPOTHESIS TESTING

The CR2 correction produces a CRVE that has reduced bias (compared to other CRVEs)

when the number of clusters is small, leading to more accurate standard errors. However,

standard errors are of limited inherent interest—rather, their main use is for the construc-

tion of hypothesis tests and confidence intervals. Cluster-robust Wald-type test statistics

are a function of the parameter estimates β̂ and the corresponding CRVE. Conventional

Wald tests are justified based on the asymptotic behavior of robust Wald statistics as the

number of clusters grows large (i.e., as m→∞).

Like the research on the bias of the CRVE estimator, evidence from a wide variety

of contexts indicates that the asymptotic limiting distribution of these statistics may be

a poor approximation when the number of clusters is small, even if corrections such as
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CR2 or CR3 are employed (Bell and McCaffrey, 2002; Bertrand et al., 2004; Cameron

et al., 2008). Like the bias of the CRVE estimator itself, the accuracy of the asymptotic

approximations depends on design features such as the degree of imbalance across clusters,

skewness or leverage of the covariates, and the similarity of cluster sizes (Carter et al., 2013;

McCaffrey et al., 2001; Tipton and Pustejovsky, 2015; Webb and MacKinnon, 2013). This

provides motivation for development of general-purpose hypothesis testing procedures that

have accurate rejection rates in small samples.

In this section, we develop a general method for conducting hypothesis tests based

on CRVEs. We consider linear constraints on β, where the null hypothesis has the form

H0 : Cβ = d for fixed q× r matrix C and q×1 vector d. The cluster-robust Wald statistic

is then

Q =
(
Cβ̂ − d

)′ (
CVCRC′

)−1 (
Cβ̂ − d

)
, (11)

where VCR is one of the cluster-robust estimators described in previous sections. The

asymptotic Wald test rejects H0 if Q exceeds the α critical value from a chi-squared distri-

bution with q degrees of freedom. In large samples, it can be shown that this test has level

α. However, in practice it is rarely clear how large a sample is needed for the asymptotic

approximation to be accurate.

3.1 Small-sample corrections for t-tests

Consider testing the hypothesis H0 : c′β = 0 for a fixed r × 1 contrast vector c. For

this one-dimensional constraint, an equivalent to the Wald statistic given in (11) is to

use the test statistic Z = c′β̂/
√

c′VCRc, which follows a standard normal distribution in

large samples. In small samples, it is common to use the CR1 or CR1S estimator and

to approximate the distribution of Z by a t(m − 1) distribution. Hansen (2007) provided

one justification for the use of this reference distribution by identifying conditions under

which Z converges in distribution to t(m−1) as the within-cluster sample sizes grow large,

with m fixed (see also Donald and Lang, 2007). Ibragimov and Müller (2010) proposed a

weighting technique derived so that that t(m−1) critical values are conservative (leading to

rejection rates less than or equal to α). However, both of these arguments require that c′β

be separately identified within each cluster. Outside of these circumstances, using t(m−1)
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critical values can still lead to over-rejection (Cameron and Miller, 2015). Furthermore,

using these critical values does not take into account that the distribution of VCR is affected

by the structure of the covariate matrix.

An alternative t-test developed by Bell and McCaffrey (2002) involves using a t(ν) refer-

ences distribution, with degrees of freedom ν estimated by a Satterthwaite approximation.

The Satterthwaite approximation (Satterthwaite, 1946) entails using degrees of freedom

that are a function of the the first two moments of the sampling distribution of c′VCRc.

Theoretically, these degrees of freedom should be

ν =
2
[
E
(
c′VCR2c

)]2
Var (c′VCR2c)

. (12)

Expressions for the first two moments of c′VCR2c can be derived under the assumption

that the errors ε1, ..., εm are normally distributed.

In practice, both moments involve the variance structure Σ, which is unknown. Bell and

McCaffrey (2002) proposed to estimate the moments based on the same working model that

is used to derive the adjustment matrices. This “model-assisted” estimate of the degrees

of freedom is then calculated as

νM =
(
∑m

i=1 p′iΦpi)
2∑m

i=1

∑m
j=1 (p′iΦpj)

2 , (13)

where pi = (I−HX)′i AiWiR̈iMR̈c. Alternately, for any of the CRVEs one could instead

use an “empirical” estimate of the degrees of freedom, constructed by substituting eie
′
i in

place of Σi. However, Bell and McCaffrey (2002) found using simulation that this plug-in

degrees of freedom estimate led to very conservative rejection rates.

The Bell and McCaffrey (2002) Satterthwaite approximation has been shown to perform

well in a variety of conditions (see Section 4). These studies encompass a variety of data

generation processes, covariate types, and weighting procedures. A key finding is that the

degrees of freedom depend not only on the number of clusters m, but also on features

of the covariates. When the covariate is balanced across clusters—as occurs in balanced

panels with a dichotomous covariate with the same proportion of ones in each cluster—the

degrees of freedom are m− 1 even in small samples. However, when the covariate is highly

unbalanced—as occurs when the panel is not balanced or if the proportion of ones varies
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from cluster to cluster—the degrees of freedom can be considerably smaller. Similarly,

covariates with large leverage points will tend to exhibit lower of degrees of freedom.

By adjusting the degrees of freedom to account for these features, the Type I error rate

of the test is nearly always less than or equal to the nominal α, so long as the degrees of

freedom are larger than 4 or 5 (Bell and McCaffrey, 2002; Tipton, 2015). This is because

when the degrees of freedom are smaller, the t-distribution approximation to the sampling

distribution does not hold, and the Type I error can be higher than the stated α level.2

In comparison, the CR1 degrees of freedom (i.e., m − 1) are constant, and the test only

performs well when in the cases in which the covariates are balanced. Because the degrees

of freedom are covariate-dependent, it is not possible to assess whether a small-sample

correction is needed based solely on the total number of clusters in the data. Consequently,

Tipton (2015) argued that t-tests based on CRVE should routinely use the CR2 variance

estimator and the Satterthwaite degrees of freedom, even when m appears to be large.

3.2 Small-sample corrections for F-tests

Little research has considered small-sample corrections for multiple-constraint hypothesis

tests based on cluster-robust Wald statistics. Cameron and Miller highlight this problem,

noting that some form of adjustment is clearly needed in light of the extensive work on

single-parameter tests. We now describe an approach to multi-parameter testing that

closely parallels the Satterthwaite correction for t-tests.

Our approach is to approximate the sampling distribution of Q by Hotelling’s T 2 dis-

tribution (a multiple of an F distribution) with estimated degrees of freedom. To motivate

the approximation, let G = CMR̈R̈′WΦWR̈MR̈C′ denote the variance of Cβ̂ under the

working model and observe that Q can be written as

Q = z′Ω−1z,

2When the degrees of freedom are smaller than 4 or 5, Tipton (2015) suggested using a smaller α level

for hypothesis testing in order to partially compensate. Although degrees of freedom this small may seem

unlikely, they can easily arise in practice even when the number of clusters is moderate. For example, in

a state-by-year panel with m = 48 states, the degrees of freedom can be quite small if a policy is only

implemented in 10 percent of states.
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where z = G−1/2
(
Cβ̂ − d

)
and Ω = G−1/2CVCR2C′G−1/2. Now suppose that η × Ω

follows a Wishart distribution with η degrees of freedom and a q-dimensional identity scale

matrix. It then follows that(
η − q + 1

ηq

)
Q ∼̇ F (q, η − q + 1). (14)

We will refer to this as the approximate Hotelling’s T 2 (AHT) test. We consider how

to estimate η below. This approximation is conceptually similar to the Satterthwaite

approximation for one-dimensional constraints, and in fact reduces to the Satterthwaite

approximation when q = 1. For q > 1, the test depends on the multivariate distribution of

VCR2, including both variance and covariance terms.

Tipton and Pustejovsky (2015) recently introduced this test for application in the special

case of CRVE for meta-regression models. Wishart approximations have been considered

as approximations in several simpler models where special cases of CRVE are used. Nel

and van der Merwe (1986) proposed an AHT-type test for testing equality of multivariate

means across two samples with unequal variance-covariance matrices (i.e., the multivariate

Behrens-Fisher problem; see also Krishnamoorthy and Yu, 2004). Zhang (2012a) followed

a similar approach in developing a test for contrasts in analysis of variance models with

unequal within-cell variance, which are particularly simple cases of linear models with

heteroskedastic error terms. Zhang (2012b) extended the method to multivariate analysis

of variance models where the covariance of the errors differs across groups, a special case

of model (2) where the CR2 variance estimator has a particularly simple form. In each

of these special cases, the robust variance estimator is a mixture of Wishart distributions

that is well-approximated by a Wishart distribution with estimated degrees of freedom.

Additionally, Pan and Wall (2002) described an F-test for use in GEE models, which uses

the Wishart approximation to the distribution of VCR0 but estimates the degrees of freedom

using a different method than the one we describe below.

The contribution of the present paper is to extend the AHT test to the general setting

of linear models with fixed effects and clustered errors. The remaining question is how

to estimate the parameter η, which determines scalar multiplier and denominator degrees

of freedom of the AHT test. To do so, we match the mean and variance of Ω to that

of the approximating Wishart distribution under the working variance model Φ, just as
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in the degrees of freedom for the t-test. The problem that arises in doing so is that it is

not possible to exactly match both moments if q > 1. Following Tipton and Pustejovsky

(2015), we instead match the mean and total variance of Ω—i.e., the sum of the variances

of its entries.

Let g1, ...,gq denote the q × 1 column vectors of G−1/2. Let

psi = (I−HX)′i AiWiR̈iMR̈Cgs

for s = 1, ..., q and i = 1, ...,m.The degrees of freedom are then estimated under the working

model as

ηM =
q(q + 1)∑q

s,t=1

∑m
i,j=1 p′siΦptjp′tiΦpsj + p′siΦpsjp′tiΦptj

. (15)

If q = 1, then ηM reduces to νM from Equation (13).

This AHT F-test shares several features with the t-test developed by Bell and McCaffrey.

As with the t-test, the degrees of freedom of this F-test depend not only on the number of

clusters, but also on features of the covariates being tested. The degrees of freedom can be

much lower than m− 1, particularly when the covariates being tested exhibit high leverage

or are unbalanced across clusters. For example, if the goal is to test if there are differences

across a three-arm, block-randomized experiment with clustering by block, the degrees of

freedom will be largest (approaching m−1) when the treatment is allocated equally across

the three groups within each block. When the proportion varies across clusters, the degrees

of freedom are reduced, potentially into “small sample” territory even when the number of

clusters is large.

A primary difference between the AHT test and the standard test is in the degrees

of freedom. We expect that using the AHT degrees of freedom, which take into account

features of the covariate distribution, will improve the accuracy of the rejection rates in

small samples. We have also claimed that the choice of working model used in the CR2

correction does not have a strong influence on performance. In the next section, we provide

evidence for these claims through a careful review of prior simulation study results and

through the results of a new simulation study based upon the conditions commonly found

in economic applications.
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4 Simulation evidence

Evidence from several large simulation studies indicates that hypothesis tests based on the

CR2 adjustment and estimated degrees of freedom substantially out-perform the procedures

that are most commonly used in empirical applications. However, existing simulations have

focused almost entirely on single-parameter tests. In this section, we first review findings

from previous simulations, with particular emphasis on the role of covariate features and

sample size on the Type I error rates of these tests. We then describe the design and results

of a new simulation study, which focused on the rejection rates of multiple-parameter tests.

Throughout, we refer to tests employing the CR2-corrected CRVE and estimated degrees

of freedom as the “AHT” test; for t-tests, the estimated degrees of freedom are equivalent

to the Satterthwaite approximation given in Equation (13). We refer to tests employing

the CR1 correction and m− 1 degrees of freedom as the “standard” test.

4.1 Review of previous simulation studies

To date, four simulation studies have examined the performance of the CR2 t-test, across a

total of nearly 100 parameter combinations and a range of application contexts. Cameron

and Miller (2015) and Imbens and Kolesar (2015) focused on conditions common in eco-

nomics, while Bell and McCaffrey (2002) focused on those common in complex surveys

and Tipton (2015) on those in meta-analysis. Table 1 summarizes the results of these

studies. Some of the studies focused on policy dummies in the balanced case, while others

varied the degree of balance; still others examined continuous covariates that are sym-

metrically distributed, as well as those with high skew and leverage. These studies also

examined the role of the number of clusters, with values ranging from 6 to 50, as well as

the number of observations per clusters (from 1 to roughly 260). Finally, the studies used

a range of both true error structures (including various combinations of heteroskedasticity

and clustering) and estimation strategies (including different ’working’ models), including

scenarios in which the working model differed from the true error structure. Finally, while

most previous studies focused on OLS estimation, one study (Tipton, 2015) examined the

performance of t-tests based on WLS estimation.

Table 1 also indicates the range of Type I error rates observed across the conditions
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studied in each of the simulation studies, with values given for both the standard and AHT

tests. Across studies, the Type I error for the standard t-test ranges from .01 to .34 for a

stated α level of .05. These values are particularly far above nominal when the covariate

tested is unbalanced, skewed (i.e., high leverage), or when the number of observations per

cluster varies. Although not reported in the table, high Type I error rates occur not only

when the number of clusters is very small, but also at moderate sizes when the covariate

is unbalanced or skewed.

In comparison, the AHT t-test performs considerably better across the range of condi-

tions studied, with Type I error rates ranging between 0.01 and 0.13. Notably, the largest

value observed here is from Imbens and Kolesar (2015), who do not break results out by

degrees of freedom. Given the condition studied (30 clusters, with only 3 having a policy

dummy), it is quite possible that the degrees of freedom are below the cut-off of 4 or 5

at which others have shown the t-test approximation can fail (Tipton, 2015). Putting this

value aside, the maximum Type I error observed in these conditions is 0.06, only slightly

higher than nominal. Crucially, these nearly nominal Type I error rates hold even when the

working model is far from the true error structure, and for various types of covariates. This

is because the AHT test takes into account covariate features in the degrees of freedom,

which can be far less than m− 1.

In comparison to the t-test, the AHT F-test has only been studied in a single simulation

focused on the meta-analytic case (Tipton and Pustejovsky, 2015). Although this study

focused only on the use of CRVE with WLS estimation, it was comprehensive in other

regards. In particular, it examined the effects of the number of covariates in the model

(up to p = 5) and the number of constraints tested (q = 2, 3, 4, 5), including cases in which

p = q and in which q < p. The simulations also examined models with various combinations

of covariate types, including both balanced and unbalanced indicator variables, as well as

symmetric or skewed continuous covariates. Like Tipton (2015), these simulations focused

on true correlation structures that included heteroskedasticity, clustering (i.e., a cluster

specific random effect), and correlated errors. The working models were then chosen to be

far from the true error structure (i.e., an independent-errors working model). Finally, the

number of clusters was varied from 10 to 100, each with between 1 and 10 observations.
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Type I error rates of the standard test and the AHT F-test were compared for nominal α

levels of .01, .05, and .10.

The results of the simulations by Tipton and Pustejovsky (2015) indicate that the AHT

F-test always has Type I error less than or equal to the stated α level, except in cases with

extreme model misspecification. However, even under such conditions, the Type I error

was in line with rates observed for t-tests; for example, for α = 0.05 the error was not

above 0.06. In comparison, the Type I error of the standard test was often very high,

with maximum rejection rates ranging from .17 to .22, depending on the dimension of

the constraint being tested. Like the t-test, the degrees of freedom of the AHT F-test

were driven by covariate features, with particularly low degrees of freedom resulting from

covariates that are unbalanced or skewed.

While the simulation study by Tipton and Pustejovsky (2015) included a variety of

conditions, its design was focused on the types of data found in meta-analytic applications.

These differ from the economic context in two ways. First, in meta-analysis, it is com-

mon to have heteroskedasticity of a known form and for analysts to incorporate weights

in the analysis (typically inverse-variance weights). In comparison, unweighted, OLS esti-

mation is more common in economic applications. Second, meta-analytic regressions often

involve testing a variety of types of covariates, including continuous regressors. In com-

parison, many economic applications are focused on testing binary indicator variables that

represent differences between policy regimes. Tests for policy effects can involve cluster-

level comparisons (e.g., comparisons across states) or observation-level comparisons (e.g.,

pre/post comparisons within each state), or a combination of both observation-level and

cluster-level comparisons (as in difference-in-differences analysis). In light of these differ-

ences, we conducted a new study to evaluate the performance of the standard and AHT

tests under conditions that more closely resemble economic applications.

4.2 Simulation Design

The simulation study focused on testing hypotheses about the relative effects of three policy

conditions, while varying the manner in which the policy indicators are assigned following

one of three distinct designs. First, we considered a randomized block (RB) design in
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which every policy condition is observed in every cluster. Second, we considered a cluster-

randomized (CR) design in which each cluster is observed under a single policy condition.

Third, we considered a difference-in-differences (DD) design in which some clusters are

observed under all three policy conditions while other clusters are observed under a single

condition. For each design, we simulated both balanced and unbalanced configurations, for

a total of six distinct study designs, across which the performance of CRVEs is expected

to vary. Appendix B describes the exact specification of each design. For each design, we

simulated studies with m = 15, 30, or 50 clusters, each with n = 18 or 30 units.

For a given study design, we simulated multivariate outcome data so that we could

examine the performance of the proposed testing procedures for constraints of varying

dimension. Specifically, we simulated a tri-variate, equi-correlated outcome from a data-

generating process in which all three policy conditions produce identical average outcomes,

so that all tested null hypotheses hold. Let yhijk denote the measurement of outcome k

at time point j for unit i under condition h, for h = 1, ..., 3, i = 1, ...,m, j = 1, ..., n, and

k = 1, ..., 3. The data-generating model is then

yhijk = νhi + εijk, (16)

where νhi is a random effect for unit i under condition h and εijk is the idiosyncratic error

for unit i at time point j on outcome k. The random effects for unit i are taken to have

variance Var (νhi) = τ 2. We further assumed that the random effects are correlated, which

has the effect of inducing variability in the cluster-specific treatment effects and thus a

degree of misspecification into the analytic models described below. Letting σ2
δ denote the

degree of treatment effect variability relative to the total variability in a given outcome

measurement, we simulated the random effects ν1i, ν2i, ν3i to satisfy Var (νgi − νhi) = σ2
δ for

g 6= h, g, h = 1, 2, 3. The errors at a given time point are assumed to be correlated, with

Var (εijk) = 1− τ 2 and corr (εijk, εijl) = ρ for k 6= l, k, l = 1, 2, 3.

Under this data-generating process, we simulated data based on parameter values of

τ 2 = .05, .15, or .25 for the intra-class correlation; outcomes that were either weakly

(ρ = .2) or strongly correlated (ρ = .8); and values of σ2
δ = .00, .01, or .04 for treatment

effect variability. Each combination of sample sizes and parameter levels was simulated

under each of the six study designs, yielding a total of 648 simulation conditions.
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Given a set of simulated data, we estimated the effects of the second and third policy

conditions (relative to the first) on each outcome, using a seemingly unrelated regression

framework. The general analytic model for the difference-in-differences design was

yhijk = µhk + αi + γj + εijk, (17)

where µhk is the mean of outcome k under condition h, αi is a fixed effect for each cluster,

γj is a fixed effect for each unit within the cluster (i.e., per time-point), and εijk is residual

error. For the cluster-randomized designs, fixed effects for clusters were omitted because

the clusters are nested within treatment conditions. For the randomized block designs,

the fixed effects for time-points were omitted for simplicity. The model is estimated by

OLS after absorbing any fixed effects, and so the “working” model amounts to assuming

that the residuals are all independent and identically distributed. Note that the working

model departs from the true data generating model both because of correlation among

the outcomes (ρ > 0) and because of treatment effect variability (σ2
δ > 0). The range of

parameter combinations used in the true data generating model thus allow us to examine

the performance of the AHT test under both small and large degrees of working model

misspecification.

Analytic model (17) provided opportunities to test a range of single- and multi-parameter

constraints. We first tested the single-dimensional null hypotheses that a given policy con-

dition had no average effect on the first outcome (H0 : µ11 = µ12 or H0 : µ11 = µ13). We

also tested the null hypothesis of no differences among policy conditions on the first out-

come (H0 : µ11 = µ12 = µ13), which has dimension q = 2. We then tested the multi-variate

versions of the above tests, which involve all three outcome measures jointly. Namely, we

tested the null hypotheses that a given policy condition had no average effects on any out-

come (i.e., H0 : µ11 = µ1h, µ21 = µ2h, µ31 = µ3h, for h = 2 or h = 3) which has dimension

q = 3, and the null hypothesis of no differences among policy conditions on any outcome

(H0 : µ11 = µ12 = µ13, µ21 = µ22 = µ23, µ31 = µ32 = µ33), which has dimension q = 6.

For a given combination of sample sizes, parameter levels, and study design, we simulated

10,000 datasets from model (16), estimated model (17) on each dataset, and tested all

of the hypotheses described above. Simulated Type I error rates therefore have standard

errors of approximately 0.001 for α = .01, 0.0022 for α = .05, and 0.003 for α = .10.
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4.3 Simulation Results

Our discussion of the simulation results is focused on four trends, each of which is depicted

visually in a figure and described in the text. All of the trends are similar to the find-

ings from Tipton and Pustejovsky (2015), which provides further support that the AHT

F-test performs well across a wide range of data generating mechanisms and parameter

combinations.

The first finding is that the AHT test has Type I error close to the stated α level for

all parameter combinations studied, whereas the standard test (based on the CR1 variance

estimator and m − 1 degrees of freedom) does not. Figure 1 illustrates this pattern, for

constraints of varying dimension (from q = 1, in the first column, to q = 6, in the final

column) and nominal α level (from .01, in the first row, to .10, in the last row). In each

of these figures, the number of clusters varies from 15 to 50 (on the horizontal axis), the

solid horizontal line indicates the stated α level and the dashed line indicates an upper

confidence bound on simulation error. It can be seen that the AHT test has Type I error

near the stated α level, even with a small number of clusters. When the number of clusters

is very small, the Type I error can be smaller than the stated α level. Although there exist

situations in which the error is above the simulation bound, the departures are typically

small. For example, when m = 15 the rejection rates do not exceed 0.021 for α = .01,

0.073 for α = .05, and 0.134 for α = .10. The rejection rates are even closer to nominal

for lower-dimensional constraints. In comparison, the Type I error for the standard test

can be markedly higher than the stated α level, particularly when the number of clusters

is small or the dimension of the hypothesis is large. For example, for nominal α = .05, the

maximum Type I error ranges from 0.124 (q = 1) to 0.686 (q = 6) for data sets with 15

clusters. Perhaps even more important for practice, even when there are 50 clusters, the

rejection rate of the standard test can be far above the stated α level. Again, focusing on

the α = 0.05 case, the maximum error ranges from 0.072 (q = 1) to 0.183 (q = 6).

In order to better understand the effects of different parameter combinations on the

performance of both tests, Figure 2 focuses on the α = 0.05 case and breaks out the results

by study design. The top row of the figure depicts the standard test, while the bottom

row depicts the AHT test; columns correspond to the number of clusters. Within each
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graph, results are given by study design (on the horizontal axis), with colors corresponding

to the dimension of the test. In the top panel, it can be seen that the rejection rate of the

standard test increases with the dimension of the test (q) and the degree of unbalance in the

study design. Differences between the balanced and unbalanced designs are largest for the

CR and DD designs, with smaller discrepancies in RB designs. The bottom row of Figure

2 displays results for the AHT test; here we focus on three trends. First, the rejection

rate of the AHT test usually increases as the dimension of the test increases, though never

above 0.073. Second, unbalanced designs led to rejection rates that were usually below

the nominal α—just the opposite of how the standard test is affected by unbalance. This

trend is the strongest for CR and DD designs, where Type I error can be close to 0 at its

minimum. Third, for studies with at least 30 clusters, rejection rates are very closes to

nominal (between 0.032 and 0.057) across all conditions studied.

Next, by simulating the errors across a variety of parameter combinations, we were also

able to test the impact of misspecification of the working model on Type I error. Because

the CR2 correction and AHT degrees of freedom are both based on a working model with

independent, homoskedastic errors, model misspecification increases with the true level of

treatment effect variance (σ2
δ ) and intra-class correlation (τ 2). Figure 3 depicts Type I

error rates for α = 0.05 for the AHT test, with separate graphs according to the dimension

q of the test (columns) and the number of clusters (rows). Within each panel, results are

separated by the 9 combinations of σ2
δ and τ 2. It can be seen that the range of rejection

rates remains very similar across the 9 error structures, with no clear pattern to the small

differences that emerge. These results follow closely those from Tipton and Pustejovsky

(2015), which also found that even with extreme model misspecification the Type I error

of the CR2S test was close to nominal.

Finally, Figure 4 depicts the range of estimated degrees of freedom for the AHT test

as a function of the simulated study design and number of clusters (m). Within each box

plot, the degrees of freedom vary depending on the hypothesis tested, with constraints of

larger dimension having lower degrees of freedom. It can be seen that the AHT degrees of

freedom are often far less than m− 1 and that they are strongly affected by the pattern of

treatment assignment and the degree of balance. The balanced and unbalanced RB designs
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Figure 4: Range of denominator degrees of freedom for AHT test, by number of clusters

and study design. CR = cluster-randomized design; DD = difference-in-differences design;

RB = randomized block design; B = balanced; U = unbalanced.

generally had AHT degrees of freedom closest to m−1 because the treatment effects being

tested are all identified within each cluster. The balanced DD design usually had the next

largest degrees of freedom because it involved contrasts between two patterns of treatment

configuration, followed by the balanced CR design, which involved contrasts between three

patterns of treatment configurations. For both of these designs, unbalance led to sharply

reduced degrees of freedom.

These new simulation results have demonstrated that the standard robust Wald test,

using the CR1 correction and m− 1 degrees of freedom, produces a wide range of rejection

rates, often far in excess of the nominal Type I error. In contrast, the rejection rates of

the AHT test are below or at most slightly above nominal, across the conditions that we

have examined. This is because the AHT test incorporates information about the covariate

features into its estimated degrees of freedom, whereas the standard test does not. An

important question that remains then is how much the AHT and standard tests diverge

in actual application. In the next section, we compare the two tests in several examples,

drawn from a range of recent empirical research.
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5 EXAMPLES

This section presents three short examples that illustrate the performance of CRVE across

a variety of applied contexts. In the first example, the effects of substantive interest involve

between-cluster contrasts. The second example involves a cluster-robust Hausman test for

differences between within- and across-cluster information. In the final example, the effects

are identified within each cluster. In each example, we demonstrate the proposed AHT test

for single- and multiple-parameter hypotheses and compare the results to the standard test

based on the CR1 variance estimator and m − 1 degrees of freedom. The focus here is

on providing insight into the conditions under which the AHT and standard estimators

diverge in terms of three quantities of interest: the standard error estimates, the degrees

of freedom estimates, and the stated p-values. Data files and replication code (in R) are

available for each analysis as an online supplement.

5.1 Achievement Awards demonstration

Angrist and Lavy (2009) reported results from a randomized trial in Israel that aimed to

increase completion rates of the Bagrut, the national matriculation certificate for post-

secondary education, among low-achieving high school students. In the Achievement

Awards demonstration, 40 non-vocational high schools with low rates of Bagrut completion

were selected from across Israel, including 10 Arab and 10 Jewish religious schools and 20

Jewish secular schools. The schools were then pair-matched based on 1999 rates of Bagrut

completion, and within each pair one school was randomized to receive a cash-transfer

program. In these treatment schools, seniors who completed certification were eligible for

payments of approximately $1,500. Student-level covariate and outcome data were drawn

from administrative records for the school years ending in June of 2000, 2001, and 2002.

The incentive program was in effect for the group of seniors in treatment schools taking the

Bagrut exams in Spring of 2001, but the program was discontinued for the following year.

We therefore treat completion rates for 2000 and 2002 as being unaffected by treatment

assignment. The primary outcome of interest is Bagrut completion.

This study provides an opportunity to examine the AHT test in a situation in which

the treatment was assigned at the cluster level, with a smaller number of clusters. For
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simplicity, we restrict our analysis to the sample of female students, which reduces the

total sample to 35 schools. Following the original analysis of Angrist and Lavy (2009), we

allow the program’s effects to vary depending on whether a students was in the upper or

lower half of the distribution of prior-year academic performance. Letting h = 1, 2, 3 index

the sector of each school (Arab religious, Jewish religious, or Jewish secular), we consider

the following analytic model:

yhitj = zhitr
′
hitjβh + s′hitjγ + γht + µhi + εhitj (18)

In this model for student j in year t in school i in sector h, zhit is an indicator equal to one in

the treatment schools for the 2001 school year and otherwise equal to zero; rhitj is a vector

of indicators for whether the student is in the lower or upper half of the distribution of

prior academic performance; and βh = (β1h, β2h) is a vector of average treatment effects for

schools in sector h. The vector shitj includes the following individual student demographic

measures: mother’s and father’s education, immigration status, number of siblings, and

indicators for each quartile in the distribution of prior-year academic performance. The

model also includes fixed effects γht for each sector in each year and µhi for each school.

Based on Model (18), we test four hypotheses, again with the goal of exploring the

use of the AHT tests under a range of conditions. First, we assume that the program

effects are constant across sector (i.e., β1 = β2 = β3 = β) and test for whether the

program affected completion rates for students in the upper half of the prior achievement

distribution (H0 : β2 = 0, with q = 1). Second, we test for whether the program was

effective in either half of the prior academic performance (H0 : β = 0, with q = 2),

still assuming that program effects are constant across sector. Third, we test for whether

program effects in the upper half of the prior achievement distribution are moderated by

school sector (H0 : β21 = β22 = β23, with q = 3). Finally, we conduct a joint test for

whether program effects in either half of the prior achievement distribution are moderated

by school sector (H0 : β1 = β2 = β3, with q = 4).

Table 2 reports the results of all four hypothesis tests. These results indicate three

important trends. First, in the case of the first two hypotheses, the AHT test statistics

are only slightly smaller than their standard counterparts, but the degrees of freedom are

considerably smaller. These differences in degrees of freedom arise because the treatment
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Hypothesis Test F df p

ATE - upper half (q = 1) Standard 5.746 34.00 0.02217

AHT 5.169 15.86 0.03726

ATE - joint (q = 2) Standard 3.848 34.00 0.03116

AHT 3.371 15.46 0.06096

Moderation - upper half (q = 2) Standard 3.186 34.00 0.05393

AHT 0.091 3.19 0.91520

Moderation - joint (q = 4) Standard 8.213 34.00 0.00010

AHT 2.895 3.21 0.19446

Table 2: Tests of treatment effects in the Achievement Awards Demonstration

was assigned at the cluster level, while the subgroups varied within each cluster. Second,

the third and fourth hypotheses tests, which compared treatment effects across sectors and

subgroups, are cases in which the AHT and standard tests diverge markedly. For these

cases, the AHT test statistic and degrees of freedom are both considerably smaller than

those from the standard test. This reflects the degree of unbalance in allocations across

sectors (19 Jewish secular, 7 Jewish religious, and 9 Arab religious schools), combined with

cluster-level randomization. In combination, these smaller test statistics and degrees of

freedom result in larger p-values for the AHT test when compared to the standard test.

5.2 Effects of minimum legal drinking age on mortality

Our second example focues on panel data, using an example described in Angrist and Pis-

chke (2014, see also Carpenter and Dobkin, 2011). Based on data from the Fatal Accident

Reporting System maintained by the National Highway Traffic Safety Administration, we

estimated the effects of changes in the minimum legal drinking age over the time period

of 1970-1983 on state-level death rates resulting from motor vehicle crashes. A standard

difference-in-differences specification for such a state-by-year panel is

yit = r′itβ + γt + µi + εit. (19)
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In this model, time-point t is nested within state i; the outcome yit is the number of deaths

in motor vehicle crashes (per 100,000 residents) in state i at time t; rit is a vector of

covariates; γt is a fixed effect for time point t; and µi is an effect for state i. The vector

rit consists of a measure of the proportion of the population between the ages of 18 and 20

years who can legally drink alcohol and a measure of the beer taxation rate, both of which

vary across states and across time.

We apply both random effects (RE) and fixed effects (FE) approaches to estimate

the effect of lowering the legal drinking age. For the RE estimates, we use WLS with

weights derived under the assumption that µ1, ..., µm are mutually independent, normally

distributed, and independent of εit and rit. We also report an artificial Hausman test

(Arellano, 1993; Wooldridge, 2002) for correlation between the covariates rit and the state

effects µi. Such correlation creates bias in the RE estimator of the policy effect, thus

necessitating the use of the FE estimator. The artificial Hausman test amends model (19)

to include within-cluster deviations for the variables of interest, so that the estimating

equation is

yit = ritβ + r̈itδ + γt + µi + εit, (20)

where r̈it denotes the within-cluster deviations of the covariate. The parameter δ captures

the difference between the between-cluster and within-cluster estimates of β. With this

setup, the artificial Hausman test amounts to testing the null hypothesis that δ = 0, where

δ is estimated using RE.

Hypothesis Test F df p

Random effects Standard 8.261 49.00 0.00598

AHT 7.785 24.74 0.00999

Fixed effects Standard 9.660 49.00 0.00313

AHT 9.116 22.72 0.00616

Hausman test Standard 2.930 49.00 0.06283

AHT 2.489 8.69 0.13980

Table 3: Tests of effects of minimum legal drink age and Hausman specification test
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Table 3 displays the results of the tests for the policy variable and the Hausman tests

for each model specification. The results of the policy effect tests are quite similar across

specifications and versions of the test. Of note is that, for both the RE and FE estimates,

the AHT tests have only half the degrees of freedom of the corresponding standard tests.

For the artificial Hausman test, the AHT test has fewer than 9 degrees of freedom, which

leads to a much larger p-value compared to using the standard test based on CR1.

5.3 Tennessee STAR class-size experiment.

The final example demonstrates an application in which the AHT and standard tests lead

to similar results. The Tennessee STAR class size experiment is one of the most inten-

sively studied interventions in education (for a detailed review, see Schanzenbach, 2006).

The experiment involved students in kindergarten through third grade across 79 schools.

Within each school, students and their teachers were randomized equally to one of three

conditions: small class-size (targeted to have 13-17 students), regular class-size, or regular

class-size with an aide. Subsequent research has focused on the effects of these conditions on

kindergarten reading, math, and word recognition (Achilles, Bain, Bellott, Boyd-Zaharias,

Finn, Folger, Johnston and Word, 2008); high school test scores (Schanzenbach, 2006); col-

lege entrance exam participation (Krueger and Whitmore, 2001); and home ownership and

earnings (Chetty, Friedman, Hilger, Saez, Schanzenbach and Yagan, 2011), among other

outcomes.

The STAR experiment involved three treatment conditions and multiple outcomes,

providing a scenario where both t-tests (with q = 1) and F-tests with varying constraint

dimensions can be applied. For simplicity, we focus only on the subgroup of students

who were in kindergarten during the first year of the study, and on three outcomes mea-

sured at the end of the kindergarten year: reading, word recognition, and math (Achilles

et al., 2008). Outcome scores are standardized to percentile ranks, following Krueger and

Whitmore (2001). The analytic model is:

yijk = r′ijβk + s′ijγ0 + γk + µi + εijk, (21)

where yijk is the percentile rank on outcome k for student j in school i; rij includes indica-

tors for the small-class and regular-plus-aide conditions; sij includes student demographic
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covariates (i.e., free or reduced-price lunch status; race; gender; age); γk is a fixed effect for

outcome k; and µi is a fixed effect for school i. In this model, β1k represents the average

effect of being in a small class and β2k represents the average of effect of being in a regular

class with an aid, in each case compared to a regular-size class without an aid.

Using this model, we test four distinct hypotheses that vary in dimension from q = 1

to q = 6. First, using only the math achievement scores, we test the effects of small class

size (H0 : β11 = 0) while maintaining the assumption that the additional classroom aide

has no effect on student achievement (i.e., constraining β21 = 0). Second, again only using

the data for outcome k, we test the hypothesis that there are no differences across the

three class-size conditions (i.e., H0 : β1 = 0). Third, combining the data across all three

outcomes, we test the hypothesis that small class size (vs regular and regular plus aide)

had no effects on any outcome (i.e., β11 = β12 = β13 = 0). Finally, we test the hypothesis

that there are no differences across the three class-size conditions on any outcome (i.e.,

H0 : β1 = β2 = β3 = 0). The third and fourth tests use the seemingly unrelated regression

(SUR) framework, in which separate treatment effects are estimated for each outcome, but

the student demographic effects and school fixed effects are pooled across outcomes. In all

models, we estimated βk and γ after absorbing the school fixed effects and clustering the

standard errors by school.

Outcome Effect Test F df p

Math Small class (q=1) Standard 13.624 78.0 0.00041

AHT 13.590 69.0 0.00045

Small class and classroom aide (q=2) Standard 6.838 78.0 0.00183

AHT 6.725 68.6 0.00215

Combined Small class (q=3) Standard 6.408 78.0 0.00062

AHT 6.206 67.0 0.00088

Small class and classroom aide (q=6) Standard 3.284 78.0 0.00622

AHT 3.042 64.9 0.01103

Table 4: Tests of treatment effects in the Tennessee STAR class size experiment
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Table 4 displays the results for a representative subset of these hypothesis tests, using

either the standard test (with CR1) or the AHT test (with CR2). These results illustrate

two important points regarding the use of the AHT test in practice. First, across all three

analyses, the AHT t- and F-tests are only typically slightly smaller than the corresponding

standard test. Second, if treatment is randomly allocated in approximately equal pro-

portions within each cluster—as occurred in the TN STAR experiment—the degrees of

freedom for the AHT tests are only slightly smaller than those for the standard tests. In

combination with the rather large sample size of 79 schools, these differences have only

a minimal effect on the p-values for these tests. As the previous two examples illustrate,

however, the similarity between these tests is not common, and is a result only of the design

of the study, indicating that the standard test is best used only in experiments randomized

within clusters.

6 Conclusion

Across the field of economics, empirical studies often involve modeling data with a corre-

lated error structure. Correlated errors arise in the analysis of multi-stage samples, cluster-

randomized trials, panel data, and regression discontinuities with discrete forcing variables,

among other study designs. It is now routine to handle dependent error structures by using

cluster-robust variance estimation, which provides asymptotically valid standard errors and

hypothesis tests without making strong parametric assumptions about the error structure.

However, a growing body of recent work has drawn attention to the shortcomings of CRVE

methods when the data include only a small or moderate number of independent clusters

(Cameron et al., 2008; Cameron and Miller, 2015; Imbens and Kolesar, 2015; Webb and

MacKinnon, 2013). In particular, Wald tests based on CRVE can have rejection rates far

in excess of the nominal Type I error. This problem is compounded by the fact that the

performance of standard Wald tests depends on features of the study design beyond just

the total number of clusters, which can make it difficult to determine whether standard,

asymptotic valid CRVE methods are accurate.

One promising solution to this problem is to use the bias-reduced linearization variance

estimator (i.e., CR2) proposed by Bell and McCaffrey (2002), which corrects the CRVE so
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that it is exactly unbiased under an analyst-specified working model for the error struc-

ture, together with degrees of freedom estimated based on the same working model. In this

paper, we have demonstrated that the CR2 variance estimator is a fully general solution,

which can be applied even in models with fixed effects in multiple dimensions. Our re-

formulation of the bias-reduced linearization criteria also makes clear how to calculate the

CR2 correction when the model includes fixed effects, whether those fixed effects are esti-

mated by OLS or are instead absorbed before estimating the target regression parameters.

Finally, we have proposed a method for testing hypotheses that involve multiple constraints

on regression parameters, based on an approximation that generalizes the existing Satterth-

waite approximation for t-tests. With the modifications and extensions proposed in this

paper, the CR2 variance estimator and small-sample testing procedures can be applied in

a wide range of analytic models—essentially, any model estimated by ordinary or weighted

least squares.

We join Imbens and Kolesar (2015) in arguing that the CR2 estimator and correspond-

ing estimated degrees of freedom for hypothesis tests should be applied routinely, whenever

analysts use CRVE and hypothesis tests based thereon. Because the performance of stan-

dard CRVE methods depends on features of the study design, the total number of clusters

in the data is an insufficient guide to whether small-sample corrections are needed. In-

stead, the clearest way to determine whether small-sample corrections are needed is simply

to calculate them. The proposed AHT test involves two adjustments: use of the CR2

adjustment for the variance estimator and use of estimated degrees of freedom. Our sim-

ulation study illustrates that the combined result of these adjustments results in an AHT

test with Type I error close to the stated α level. Furthermore, our empirical examples

illustrate that the degrees of freedom adjustment has a relatively larger influence on small-

sample performance. These degrees of freedom can be much smaller than the number of

clusters, particularly when the covariates involved in the test involve high leverage or are

unbalanced across clusters. The estimated degrees of freedom are indicative of the preci-

sion of the standard errors, and thus provide diagnostic information that is similar to the

effective sample size measure proposed by Carter et al. (2013). We therefore recommend

that the degrees of freedom be reported along with standard errors and p-values whenever

39



the method is applied.

The idea of developing small-sample adjustments based on a working model may seem

strange to analysts accustomed to using CRVE—after all, the whole point of clustering

standard errors is to avoid making assumptions about the error structure. However, sim-

ulation studies reported here and elsewhere (Tipton, 2015; Tipton and Pustejovsky, 2015)

have demonstrated that the approach is actually robust to a high degree of misspecification

in the working model. Furthermore, while the working model provides necessary “scaffold-

ing” when the number of clusters is small, its influence tends to fall away as the number

of clusters increases, so that the CR2 estimator and AHT maintain the same asymptotic

robustness as standard CRVE methods.

One outstanding problem with the CR2 variance estimator is that it can become compu-

tationally costly (or even infeasible) when the within-cluster sample sizes are large (Mack-

innon, 2014). For example, Bertrand et al. (2004) analyzed micro-level data from a 21-year

panel of current population survey data, with clustering by state. Their data included some

state-level clusters with over ni = 10, 000 individual observations. The CR2 adjustment

matrices have dimension ni × ni, and would be very expensive to compute in this applica-

tion. Methods for improving the computational efficiency of the CR2 variance estimator

(or alternative estimators that have similar performance to CR2), should be investigated

further.

This paper has developed the CR2 estimator and AHT testing procedure for weighted

least squares estimation of linear regression models. Extensions to linear regression mod-

els with clustering in multiple, non-nested dimensions (cf. Cameron, Gelbach and Miller,

2011) appear to be possible, and their utility should be further investigated. McCaffrey and

Bell (2006) have proposed extensions to bias-reduced linearization for use with generalized

estimating equations, and future work should consider further extensions to other classes

of estimators, including two-stage least squares and generalized method of moments. Mc-

Caffrey and Bell (2006) also found that for single-parameter hypotheses, a saddlepoint ap-

proximation to the Wald test statistic provides even more accurate rejection rates than the

Satterthwaite approximation given in Equation (13). It would be interesting to investigate

whether the saddlepoint approximation could be extended to handle multiple-parameter
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constraints, although this appears to be far from straight-forward.

A BRL adjustment matrices

This appendix provides proof of the two theorems from Section 2.

A.1 Proof of Theorem 1

The Moore-Penrose inverse of Bi can be computed from its eigen-decomposition. Let b ≤ ni

denote the rank of Bi. Let Λ be the b × b diagonal matrix of the positive eigenvalues of

Bi and V be the ni × b matrix of corresponding eigen-vectors, so that Bi = VΛV′. Then

B+
i = VΛ−1V′ and B

+1/2
i = VΛ−1/2V′. Now, observe that

R̈′iWiAi (I−HX)i Φ (I−HX)′i A
′
iWiR̈i = R̈′iWiDiB

+1/2
i BiB

+1/2
i D′iWiR̈i

= R̈′iWiDiVV′D′iWiR̈i. (22)

Because Di, and Φ are positive definite and Bi is symmetric, the eigen-vectors V define

an orthonormal basis for the column span of (I−HẌ)i. We now show that Üi is in the

column space of (I−HX)i. Let Zi be an ni×(r+s) matrix of zeros. Let Zk = −ÜkL
−1M−1

Ü
,

for k 6= j and take Z = (Z′1, ...,Z
′
m)′. Now observe that (I−HT) Z = Z. It follows that

(I−HX)i Z = (I−HÜ)i (I−HT) Z = (I−HÜ)i Z

= Zi − ÜiMÜ

m∑
k=1

Ü′kWkZk = ÜiMÜ

(∑
k 6=j

Ü′kWkÜ

)
L−1M−1

Ü

= Üi.

Thus, there exists an N × (r + s) matrix Z such that (I−HẌ)i Z = Üi, i.e., Üi is in the

column span of (I−HX)i. Because DiWi is positive definite and R̈i is a sub-matrix of Üi,

DiWiR̈i is also in the column span of (I−HX)i. It follows that

R̈′iWiDiVV′D′iWiR̈i = R̈′iWiΦiWiR̈i. (23)

Substituting (23) into (22) demonstrates that Ai satisfies criterion (7).
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Under the working model, the residuals from cluster i have mean 0 and variance

Var (ëi) = (I−HX)i Φ (I−HX)′i ,

It follows that

E
(
VCR2

)
= MR̈

[
m∑
i=1

R̈′iWiAi (I−HX)i Φ (I−HX)′i AiWiR̈i

]
MR̈

= MR̈

[
m∑
i=1

R̈′iWiΦiWiR̈i

]
MR̈

= Var
(
β̂
)

A.2 Proof of Theorem 2

From the fact that Ü′iWiTi = 0 for i = 1, ...,m, it follows that

Bi = Di (I−HÜ)i (I−HT) Φ (I−HT)′ (I−HÜ)′i D
′
i

= Di (I−HÜ −HT)i Φ (I−HÜ −HT)′i D
′
i

= Di

(
Φi − ÜiMÜÜ′i −TiMTT′i

)
D′i

and

B+
i = (D′i)

−1
(
Φi − ÜiMÜÜ′i −TiMTT′i

)+
D−1i . (24)

Let Ψi =
(
Φi − ÜiMÜÜ′i

)+
. Using a generalized Woodbury identity (Henderson and

Searle, 1981),

Ψi = Wi + WiÜiMÜ

(
MÜ −MÜÜ′iWiÜiMÜ

)+
MÜÜ′iWi.

It follows that ΨiTi = WiTi. Another application of the generalized Woodbury identity

gives(
Φi − ÜiMÜÜ′i −TiMTT′i

)+
= Ψi + ΨiTiMT (MT −MTT′iΨiTiMT)

+
MTT′iΨi

= Ψi + WiTiMT (MT −MTT′iWiTiMT)
+

MTT′iWi

= Ψi.
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The last equality follows from the fact that TiMT (MT −MTT′iWiTiMT)−MTT′i = 0

because the fixed effects are nested within clusters. Substituting into (24), we then have

that B+
i = (D′i)

−1 ΨiD
−1
i . But

B̃i = Di (I−HÜ)i Φ (I−HÜ)′i D
′
i = Di

(
Φi − ÜiMÜÜ′i

)
D′i = DiΨ

+
i D′i,

and so B+
i = B̃+

i . It follows that Ai = Ãi for i = 1, ...,m.

B Details of simulation study

This appendix provides further details regarding the design of the simulations reported in

Section 4. The simulations examined six distinct study designs. Outcomes are measured for

n units (which may be individuals, as in a cluster-randomized or block-randomized design,

or time-points, as in a difference-in-differences panel) in each of m clusters under one of

three treatment conditions. Suppose that there are G groups of units that share an identical

pattern of treatment assignments, each of size mg. Let nghi denote the number of units at

which cluster i in group g is observed under condition h, for i = 1, ...,m, g = 1, ..., G, and

h = 1, 2, 3. The following six designs were simulated:

1. A balanced, block-randomized design, with an un-equal allocation within each block.

In the balanced design, the treatment allocation is identical for each block, with

G = 1, m1 = m, n11i = n/2, n12i = n/3, and n13i = n/6.

2. An unbalanced, block-randomized design, with two different patterns of treatment

allocation. Here, G = 2, m1 = m2 = m/2, n11i = n/2, n12i = n/3, n13i = n/6,

n21i = n/3, n22i = 5n/9, and n23i = n/9.

3. A balanced, cluster-randomized design, in which units are nested within clusters and

an equal number of clusters are assigned to each treatment condition. Here, G = 3,

mg = m/3, and nghi = n for g = h and zero otherwise.

4. An unbalanced, cluster-randomized design, in which units are nested within clusters

but the number of clusters assigned to each condition is not equal. Here, G = 3;

m1 = 0.5m,m2 = 0.3m,m3 = 0.2m; and nghi = n for g = h and zero otherwise.
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5. A balanced difference-in-differences design, with two patterns of treatment allocation

(G = 2) and clusters allocated equally to each pattern (m1 = m2 = m/2). Here,

half of the clusters are observed under the first treatment condition only (n11i = n)

and the remaining half are observed under all three conditions, with n21i = n/2,

n22i = n/3, and n23i = n/6.

6. An unbalanced difference-in-differences design, again with two patterns of treatment

allocation (G = 2), but where m1 = 2m/3 clusters are observed under the first treat-

ment condition only (n11i = n) and the remaining m2 = m/3 clusters are observed

under all three conditions, with n21i = n/2, n22i = n/3, and n23i = n/6.
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